integral value - определение. Что такое integral value
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое integral value - определение

FUNCTIONS OF A REAL RETURNING RESPECTIVELY THE LARGEST SMALLER AND THE SMALLEST LARGER INTEGER
Ceiling function; Greatest integer function; Integral part; Integral value; Integer part; Fractional parts; Fractional part of a number; Ceil (programming); Floor (programming); Floor function; Ceil function; Greatest-integer function; Entier function; Entier; Floor(); ⌈; ⌉; Fractional part function; Floor & ceiling functions; Floor and ceiling; Floor ceiling; Ceil (math); Floor (mathematics); Ceil; ⌊; ⌋; ⌊x⌋; ⌈x⌉; Roof function; Floor (function); Floor (command); Ceil (command); Flooring (mathematics); Floor(x); Ceiling(x); Ceil(x)
  • C]]

Henstock–Kurzweil integral         
GENERALIZATION OF THE RIEMANN INTEGRAL
Henstock-Kurzweil Integral; Perron integral; Gauge integral; Henstock integral; Denjoy Integral; Henstock-Kurzweil-Stieltjes integral; Perron Integral; Henstock-Kurzweil-Stieltjes Integral; Generalized Riemann integral; Denjoy-Perron integral; Henstock-Kurzweil integral; H-K integral
In mathematics, the Henstock–Kurzweil integral or generalized Riemann integral or gauge integral – also known as the (narrow) Denjoy integral (pronounced ), Luzin integral or Perron integral, but not to be confused with the more general wide Denjoy integral – is one of a number of inequivalent definitions of the integral of a function. It is a generalization of the Riemann integral, and in some situations is more general than the Lebesgue integral.
Pettis integral         
Weak integral; Gelfand-Pettis integral; Gelfand–Pettis integral; Gelfand integral; Dunford integral
In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality.
Improper integral         
  • The improper integral<br/><math>\int_{0}^{\infty} \frac{dx}{(x+1)\sqrt{x}} = \pi</math><br/> has unbounded intervals for both domain and range.
  • The improper integral<br/><math>\int_{-1}^{1} \frac{dx}{\sqrt[3]{x^2}} = 6</math><br/> converges, since both left and right limits exist, though the integrand is unbounded near an interior point.
  • An improper Riemann integral of the second kind. The integral may fail to exist because of a [[vertical asymptote]] in the function.
LIMIT OF A DEFINITE INTEGRAL WITH AS ONE OR BOTH LIMITS APPROACH INFINITY OR VALUES AT WHICH THE INTEGRAND IS UNDEFINED
Improper Riemann integral; Improper integrals; Improper Integrals; Proper integral
In mathematical analysis, an improper integral is the limit of a definite integral as an endpoint of the interval(s) of integration approaches either a specified real number or positive or negative infinity; or in some instances as both endpoints approach limits. Such an integral is often written symbolically just like a standard definite integral, in some cases with infinity as a limit of integration.

Википедия

Floor and ceiling functions

In mathematics and computer science, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted x or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted x or ceil(x).

For example, ⌊2.4⌋ = 2, ⌊−2.4⌋ = −3, ⌈2.4⌉ = 3, and ⌈−2.4⌉ = −2.

Historically, the floor of x has been–and still is–called the integral part or integer part of x, often denoted [x] (as well as a variety of other notations). Some authors may define the integral part [x] as x if x is nonnegative, and x otherwise: for example, [2.4] = 2 and [−2.4] = −3. The operation of truncation generalizes this to a specified number of digits: truncation to zero significant digits is the same as the integer part.

For n an integer, n⌋ = ⌈n⌉ = [n] = n.

Примеры употребления для integral value
1. True public interest in exposing sources, the integral value of which must compete with the need for keeping sources privileged, can exist only if the prime minister, in one case Yitzhak Rabin, has good reason to suspect that his defense minister, Shimon Peres, is revealing state secrets; or if the investigation of suspicions against the president, Ezer Weizman, smells of a settling of accounts by the family of a criminal who did not receive a presidential pardon.